Part Number Hot Search : 
GP8NC60 28100 1N5463CO CAV4201 13003H1 P4KE11 BC846AW N5408
Product Description
Full Text Search
 

To Download TEA1781T Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TEA1781T; TEA1782T
GreenChip PC secondary control ICs
Rev. 01 -- 13 February 2009 Preliminary data sheet
1. General description
The TEA1781T and TEA1782T are designed to cooperate with the TEA1771T primary side controller in a unique converter topology based on the active clamp forward converter. On the secondary side the output voltages are regulated via bidirectional switches. A typical application area of this converter is a power supply for a desktop PC. The TEA1781T and TEA1782T are secondary control ICs and regulate each output voltage independently of the primary duty cycle and other secondary output voltages. Because of these separated regulations, the system does not show any cross regulation and makes the design of the transformer easier. As each output can also be completely turned off, the system allows for an integrated standby supply. To maximize the efficiency in Standby mode, the duty cycle and operating frequency are minimized in Standby mode. The TEA1781T and TEA1782T have integrated drivers and individual output voltage regulators. In this way the 3.3 V, 5 V, 12 V and 5 V standby outputs of a typical PC power supply are regulated separately giving accurate output voltages and fast transient response. All requirements according to the Intel ATX specification (V 2.0) are integrated, such as soft start, a PS_ON# connection, a PwrOK signal and all required protections like OverCurrent Protection (OCP) and OverVoltage Protection (OVP). These voltage and current levels are monitored at each output separately. The system also has an OverTemperature Protection (OTP) function. The system fulfills the current and proposed efficiency standards such as 80+ gold, energy star and blue angel. The TEA1781T and TEA1782T are implemented in a high voltage (ABCD) Silicon On Insulator (SOI) process.
2. Features
I I I I I I I I Designed for ATX PC power supplies Integrated standby supply Enhanced efficiency in Standby mode No cross regulation Accurate output voltage regulation Fast transient response Integrated soft start for all output voltages Flexible transformer design without the need of a post regulator
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
I I I I I I
Overvoltage protection Overcurrent protection Overtemperature protection System failure detection Soft (re)start Low external component count
3. Applications
I PC desktop power supply
4. Ordering information
Table 1. Ordering information Package Name TEA1781T TEA1782T SO28 SO28 Description Plastic small outline package; 28 leads; body width 7.5 mm Plastic small outline package; 28 leads; body width 7.5 mm Version SOT136-1 SOT136-1 Type number
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
2 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
5. Block diagram
ENABLE PWROK 18 PowerOK Soft Start start Vref(5V) Votp start PGOOD Vref(3V3)
Vreg(VDD)
10 Enable IENABLE Vtrip(ENABLE) Temperature protection
9 PowerGood
PGOOD 22
VNTC
Start-up
4
VSTARTUP
15 14 13
VDD GND GND
Control 5 V Vtrip td
I-control 5 V I
Vref(5V)
Control 3.3 V QR
I-control 3.3 V I
Vref(3V3)
V/I V/I QR S Protection 5 V
Ipd
S
V/I
Pull-down
Ipd
Protection 3.3 V 19 IO > Iocp Vovp(VOUT_3V3) I VSENSE_3V3
Drive SR
Drive 5 V VDD Vovp(VOUT_5V) IO
IO > Iocp Iocp Vuvp(VOUT_5V) Vref(OCP) VDD Drive 3.3 V
O
Vuvp(VOUT_3V3)
28 26 27 WND_SEC_2 GSR FSR
2 GSB_5V
3 DF_5V
1 FSB_5V
11 12 6 PGND_5V GSF_5V
7
6 OCP
8 24 23 25 17 16 VSENSE_5V GSB_3V3 PGND_3V3 FSB_3V3 DF_3V3 GSF_3V3
21
20
CS_3V3 VOUT_3V3
CS_5V VOUT_5V
014aaa181
Fig 1.
TEA1781T block diagram
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
3 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
EN_NM
ENABLE
PS_OFF
VDD
GND GND
Pulldown
Ipd
Enable NM VVDD < Vstop(VDD) VEN_NM
VENABLE
Digital control STARTUP VENABLE = 4 V
VVDD > Vstartup(VDD) VVDD > Vstartup(VDD)
Startup
Opto control VDD UP OPTO DOWN V/I
Vstartup(VDD) Soft Start start
IENABLE > Iprot(ENABLE)+ EN_NM + PS_OFF+ PROT_12V + UVP_STB Vref(12V) I V/I V/I I SYSTEM RESTART EN_NM Control 12 V NORMAL VENABLE = 11 V PS_OFF PROT/STDB VENABLE = 4 V system restart normal
Vref(stb) Vref(12V)
start
system failure detection I-control standby UVP_STB I Protection 12 V Control standby Drive 3.3 V QR S Vuvp(VOUT_STB) IVOUT_STB > IOCP_STB VDD Vref(OCP) Drive standby Vovp(VOUT_STB) IVOUT_STB IOCP_STB Vref(OCP) Protection standby I V/I Vref(stb) PowerGood PGOOD
PROT_12V PROT_STB
Vtrip
Control 12 V td Vuvp(VOUT_12V1) QR S Vovp(VOUT_12V1) IVOUT_12V2 12 V OCP detection
Drive SR
Drive 12 V VDD
IVOUT_12V IOCP_12V
FSR WND_SEC_1
GSB_12V DF_12V FSB_12V GSR
GSF_12V PGND_12V
CS_12V
VOUT_12V2 VOUT_12V1 OCP_12V
GSB_STB DF_STB
FSB_STB PGND_STB GSF_STB
VOUT_STB CS_STB
OCP_STB
014aaa182
Fig 2.
TEA1782T block diagram
6. Pinning information
6.1 Pinning
FSB_5V GSB_5V DF_5V VSTARTUP OCP CS_5V VOUT_5V VSENSE_5V VNTC
1 2 3 4 5 6 7 8 9
28 FSR 27 GSR 26 WND_SEC_2 25 FSB_3V3 24 GSB_3V3 23 DF_3V3 22 PGOOD 21 CS_3V3 20 VOUT_3V3 19 VSENSE_3V3 18 PWROK 17 PGND_3V3 16 GSF_3V3 15 VDD
014aaa183
FSB_12V GSB_12V DF_12V OCP_12V CS_12V VOUT_12V1 VOUT_12V2 EN_NM PS_OFF
1 2 3 4 5 6 7 8 9
28 FSR 27 GSR 26 WND_SEC_1 25 FSB_STB 24 GSB_STB 23 DF_STB 22 OCP_STB 21 CS_STB 20 VOUT_STB 19 OPTO 18 PGOOD 17 PGND_STB 16 GSF_STB 15 VDD
014aaa184
TEA1781T
TEA1782T
ENABLE 10 PGND_5V 11 GSF_5V 12 GND 13 GND 14
ENABLE 10 PGND_12V 11 GSF_12V 12 GND 13 GND 14
Fig 3.
TEA1781T pin configuration
Fig 4.
TEA1782T pin configuration
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
4 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
6.2 Pin description
Table 2. Symbol FSB_5V GSB_5V DF_5V VSTARTUP OCP CS_5V VOUT_5V VSENSE_5V VNTC ENABLE PGND_5V GSF_5V GND GND VDD GSF_3V3 PGND_3V3 PWROK VSENSE_3V3 VOUT_3V3 CS_3V3 PGOOD DF_3V3 GSB_3V3 FSB_3V3 WND_SEC_2 GSR FSR Table 3. Symbol FSB_12V GSB_12V DF_12V OCP_12V CS_12V VOUT_12V1 VOUT_12V2 EN_NM TEA1781T pin description Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Description floating supply switch SB_5V gate driver switch SB_5V drain voltage of switch SF_5V start-up voltage connected to rectified secondary winding voltage overcurrent protection current sense 5 V output output voltage 5 V output sense voltage 5 V output NTC voltage enabling Normal mode power ground 5 V output gate driver switch SF_5V ground ground supply voltage gate driver switch SF_3V3 power ground 3V3 output power OK sense voltage 3.3 V output output voltage 3.3 V output current sense 5 V output PowerGood (delay setting for power OK) drain voltage of switch SF_3V3 gate driver switch SB_3V3 gate driver switch SB_3V3 secondary transformer 3.3 V / 5 V winding voltage gate driver switch SR (3.3 V / 5 V) floating supply switch SR (3.3 V / 5 V)
TEA1782T Pin description Pin 1 2 3 4 5 6 7 8 Description floating supply switch SB_12V gate driver switch SB_12V drain voltage of switch SF_12V overcurrent protection 12 V output current sense 12 V output output voltage 12 V1 output output voltage 12 V2 output enable Normal mode
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
5 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
TEA1782T Pin description ...continued Pin 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Description power supply off (via delay network connected to PS_ON#) enabling Normal mode power ground 12 V output gate driver switch SF_12V ground ground supply voltage gate driver switch SF_stb power ground standby output PowerGood (delay setting for power OK) opto coupler output voltage standby output current sense standby output overcurrent protection standby output drain voltage of switch SF_stb gate driver switch SB_stb gate driver switch SB_stb secondary transformer 12 V / standby winding voltage gate driver switch SR (12 V) floating supply switch SR (12 V)
Table 3. Symbol PS_OFF ENABLE
PGND_12V GSF_12V GND GND VDD GSF_STB PGND_STB PGOOD OPTO VOUT_STB CS_STB OCP_STB DF_STB GSB_STB FSB_STB WND_SEC_1 GSR FSR
7. Functional description
7.1 Introduction
A PC power supply has to supply a number of different supply voltages: 12 V, 5 V, 3.3 V, -12 V and 5 V standby. To achieve the required output voltage accuracy, the systems of today require dissipative post regulations. Because the system must be able to switch off the main supplies (12 V, 5 V, 3.3 V, -12 V) in Standby mode but keep the 5 V standby in operation, a separate standby supply is still common practice. With the GreenChip PC chip set (TEA1771T, TEA1781T, TEA1782T) a system configuration is introduced that integrates the post regulation and combines the main and standby converter into a single system. This high level of integration reduces the total cost of the system. Because the output voltages are regulated separately, it makes the design of the converter easier as none of the output voltages is directly related to the number of turns on the transformer. One of the main differences of this topology compared to commonly used solutions is the use of switches instead of Schottky diodes, although the rectifying switch is a so-called bidirectional switch. This switch is built up by two standard FETs in anti-series.
TEA1781_82_1 (c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
6 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
The freewheel switch behaves like an ideal diode so the setup runs in a discontinuous mode at low loads. Negative currents are avoided by the control ICs through this switch. Replacement of the rectifying Schottky diode by two switches in anti-series allows:
* Integration of the 5 V standby supply, because in Standby mode the main secondary
outputs can be switched off. The supply voltages can be individually and more accurately regulated, eliminating ubiquitous post regulators.
* As the output voltages is now regulated by the secondary switches, the duty cycle of
the primary control switch can be kept constant, preventing ringing at the primary reset voltage. A lower reset voltage results in lower required breakdown voltages of all applied FETs, both primary and secondary. This reduces costs.
* The use of Zero Voltage Switching (ZVS) at the primary side to fulfill the required
standby efficiency. To fulfill the ATX12V specification on standby efficiency requirements, the system has a Standby mode in which the frequency, duty cycle and supply currents are reduced. The TEA1781T and TEA1782T are secondary control ICs. Together with the TEA1771T primary controller they form a unique system that fulfills the 80+ gold requirements at minimum costs, eliminating any cross regulation and maximizing standby efficiency.
7.2 Supply
When the voltage on the primary side from the rectified input mains reaches its starting value, the primary side starts up and switches the primary main switch. From that moment, the secondary rectified transformer voltage at Vstartup, see Figure 5, is a ratio of the input voltage.
12 V
VVOUT_STB
Start-up
VSTARTUP
VDD
Start-up UVLO Vstartup(VDD)
VDD
TEA1781
TEA1782
014aaa185
Fig 5.
TEA1781_82_1
Start-up sequence TEA1771T
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
7 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
The VDD capacitor is charged and regulated to the Vreg(VDD) level via a linear regulator in the TEA1781T. This VDD voltage is the supply voltage for both secondary ICs. Once the VDD voltage reaches the Vstartup(VDD) level, measured in the TEA1782T, the 5 V standby is started up via a so-called soft start. This implies that during a certain time, tstart(soft), the output voltage slowly ramps up from zero to the required value. Once the system is started up, the VDD voltage is taken over by an auxiliary winding of the 5 V standby output, as shown in Figure 5. This ensures an efficient 12 V VDD voltage during standby and normal operation. As the secondary ICs are supplied via the TEA1781T and measured in the TEA1782T, both ICs are disabled in case of an open connection in the supply chain. If the VDD voltage drops below its Vstop(VDD) level, the system disables all output voltages by actively turning off all switches. This avoids undefined conditions resulting from charged gate capacitances.
7.3 Mode of operation
After the system has started up, the TEA1782T defines the mode of operation. It features four operation modes: Start-up mode, Protection/Standby mode, Normal mode and System restart mode, as depicted in Figure 6.
Digital control VVDD < Vstop(VDD) STARTUP VENABLE = 4 V
VVDD > Vstartup(VDD)
IENABLE > Iprot(ENABLE)+ EN_NM + PS_OFF+ PROT_12V + UVP_STB NORMAL VENABLE = 11 V PS_OFF SYSTEM RESTART system failure detection PROT/STDB VENABLE = 4 V
014aaa186
Fig 6.
State diagram TEA1771T
When the VDD voltage is below its stop level, the TEA1782T enters the Start-up mode and the TEA1781T charges the VDD capacitors to Vreg(VDD) via the start-up pin. When it has charged the VDD capacitor above Vstartup(VDD), the TEA1782T jumps into Protection/Standby mode and the 5 V standby output slowly rises from zero to its required value. When the PS_OFF signal becomes active low, the system switches to Normal mode enabling the main outputs (3.3 V, 5 V, 12 V and -12 V). The 12 V (and -12 V) output is regulated by the TEA1782T itself, whereas the 3.3 V and 5 V output are regulated by the TEA1781T. The TEA1781T activates the 3.3 V and 5 V outputs via the ENABLE signal.
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
8 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
At any failure condition or as soon as the PS_OFF signal is high, the system switches to Protection / Standby mode. When a failure, such as a shorted or overloaded output, is detected, the system enters the Protection mode, disabling the main output circuits but leaving the standby output in operation. However, when, for example, a secondary FET is shorted, the system enters the System restart mode and switches off the primary side. When VDD is discharged below its minimum level, Vstop(VDD), the IC enters the Start-up mode and all switches are disabled. When the system is in Protection / Standby mode, the systems lowers its duty cycle and operating frequency to optimize the system's efficiency.
7.4 Enable Normal mode
In Standby mode, an optional PFC may be switched off. When switched to Normal mode, the system has a programmable delay before the main outputs (3.3 V, 5 V and 12 V) are switched on. During this delay the PFC can be activated. An extra safety feature has been built in when enabling Normal mode. If the input voltage is too low, which can occur when the PFC fails, the system stays in Standby mode. The input voltage is measured on a rectified secondary voltage, reflecting the input voltage; see Figure 7.
Np / Ns VWND_SEC_2
Enable NM 1.25 V
Digital control EN_NM
014aaa187
Fig 7.
Enable Normal mode assures a proper start-up of the forward converter
In addition to a minimum input voltage, a delay can also be made to assure a proper start-up of the PFC before the system switches to Normal mode. A circuit according to Figure 8 must be built between the PS_ON# signal from the motherboard and the PS_OFF pin of the TEA1782T.
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
9 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
5 V standby
D1 D2 R1
PS_ON#
C1 R2
PS_OFF Digital control VVDD < Vstop(VDD) STARTUP VENABLE = 4 V
VVDD > Vstartup(VDD)
IENABLE > Iprot(ENABLE)+ EN_NM + PS_OFF+ PROT_12V + UVP_STB NORMAL VENABLE = 11 V PS_OFF SYSTEM RESTART system failure detection PROT/STDB VENABLE = 4 V
TEA1782
014aaa188
Fig 8.
Enable Normal mode assures a proper start-up of the PFC
7.5 Soft start
When the TEA1782T enters the Protection/Standby mode after start-up, the 5 V standby output is started up via a soft start. The main output voltages, 3.3 V, 5 V, 12 V and -12 V are started up via a soft start when the TEA1782T enters the Normal mode. A soft start implies that the outputs will rise gradually and simultaneously from zero to their required value during a defined period ( 15 ms). When PS_OFF is turned low, the main outputs of the TEA178x chip set ensure that power sequencing is applied according to the ATX12V specification of Intel, i.e., the 12 V and 5 V outputs must be equal to, or greater than, the 3.3 V output during power-up and normal operation.
7.6 Enable
The TEA1782T is the master of the system. The required duty cycle is communicated to the primary controller TEA1771T via the opto coupler. The TEA1782T communicates to the TEA1781T via the enable signal, see Figure 9, if the main outputs are enabled or disabled. If the system is in Normal mode, the voltage of the enable signal exceeds the trip level, Vtrip(ENABLE), enabling all outputs. Otherwise the main outputs are disabled.
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
10 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
3.3 V / 5 V outputs are enabled Vtrip(ENABLE)
IENABLE
ENABLE VVDD < Vstop(VDD)
VENABLE
Digital control STARTUP VENABLE = 4 V
VVDD > Vstartup(VDD)
temp.prot protection 5 V
IENABLE > Iprot(ENABLE)+ EN_NM + PS_OFF+ PROT_12V + UVP_STB NORMAL VENABLE = 11 V PS_OFF SYSTEM RESTART system failure detection PROT/STDB VENABLE = 4 V
TEA1781
protection 3.3 V
TEA1782
014aaa189
Fig 9.
The ENABLE signal is for communicating between the secondary control ICs
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
11 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
7.7 Output drivers
Figure 10 shows a part of the secondary side output circuitry and the applied gate drive system.
VWND_SEC_x + 12 V
VDD
VINDC / N VWND_SEC_x 0
Drive VINDC / N
VFSB_x
VDF_x
GSR_x
GSB_x
DF_x
WND_SEC_x
FSR_x
FSB_x
0
DF_x VVOUT_x VWND_SEC_x
SR SB SF
014aaa190
(1) WND_SEC_x: The "x" stands for either 1 or 2 (2) FSR_x,, GSR_x, GSB_x, DF_x, FSB_x: The "x" for these pins and symbols stands for either 3V3, 5V or 12V (3) VOUT_x: The "x" stands for either 3V3, 5V, 12V1 or 12V2.
Fig 10. Output driver circuit
The freewheel switch SF is turned on and off between the VDD voltage (12 V) and ground level as the source of SF is connected to ground. The source of switch SB varies between zero (actually a small negative voltage when the SF or its back gate diode is conducting) and the maximum secondary transformer voltage. Therefore the driver of SB requires a bootstrap circuit. When VDF_x (VDF_3V3, VDF_5V, or VDF_12V) is (about) zero, the FSB capacitor is charged to the VDD level. Switch SB can then be turned on via this charged capacitor, as it ensures a VDD voltage with respect to DF_x (pins DF_3V3, DF_5V, or DF_12V). As this capacitor will be discharged when charging the gate source capacitance of SB, the driving voltage will be slightly less than the VDD voltage. The source of the rectifying switch SR is connected to the transformer, which can be positive or negative. Therefore the FSR capacitor is charged via a boost circuit with a special voltage source that is about 12 V higher than the secondary transformer voltage at the appropriate time. As the source of the rectifying switch SR is connected to the transformer, which can be either negative or positive, the TEA1781T and TEA1782T are developed in a special process (ABCD - SOI) which is capable of handling these (high) negative and positive voltages.
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
12 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
7.8 Output voltage regulation
The output voltage is regulated to the required voltage level via a current mode control loop.
ResetSB QR S Control I V/I I-control I
VWND_SEC_x Vref ResetSB
VINDC / N 0 -Vrst / N "1" "0" closed
SB
open closed
Drive
VDD
SF
open
GSB_x
FSB_x
GSF_x
R
VOUT_x
C
DF_x
CS_x
L
VVOUT_x
VWND_SEC_x
SR
SB
SF
014aaa191
(1) WND_SEC_x: The "x" stands for either 1 or 2 (2) GSB_x, DF_x, FSB_x, GSF_x, CS_x: The "x" for these pins and symbols stands for either 3V3, 5V or 12V (3) VOUT_x: The "x" stands for either 3V3, 5V, 12V1 or 12V2.
Fig 11. Output voltage regulation
When the secondary side transformer voltage is negative, switch SB is turned off to avoid negative currents, see Figure 11. Once the secondary side transformer voltage is positive and the output current in the secondary coil has dropped below a certain value, switch SB is turned on again. This value is proportional to the difference between the output voltage and the reference voltage, increased with a ramp voltage. This type of regulation is called current mode control. A ramp voltage is required to stabilize the control loop for duty cycles smaller than 0.5 and is called slope compensation. The output current is measured using the output inductor series resistance. When the L parallel RC network is R C = ----- the voltage across the parallel capacitor equals the RL voltage across the inductors resistance. L and RL represent the inductance and the resistance value of the output inductor.
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
13 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
7.9 PowerOK
The PowerOK signal is active HIGH when the main output voltages (12 V, 5 V and 3.3 V) are within their regulation limits. Figure 12 shows the corresponding block diagram.
5 V standby
VDD
PWROK
PWROK PowerOK
PGOOD PowerGood
PGOOD PowerGood
VPGOOD
TEA1782
Protection 5 V Protection 3.3 V Protection 12 V
Vuvp
Vuvp
TEA1781
Vuvp
VOUT_5V
VOUT_3V3
VOUT_12V
014aaa192
Fig 12. PowerOK circuit diagram
The PGOOD output is pulled down by the TEA1781T when either the 5 V or 3.3 V is below its lower limit, or by the TEA1782T when the 12 V is below its lower limit. When all main outputs are above their minimum value, the PGOOD signal slowly rises from zero to the VDD level. Once the PGOOD signal exceeds VPGOOD, the PWROK signal becomes active high. A delay can be set between the output voltages reaching their end value and the PWROK signal being active high via an RC network connected to the PGOOD pins.
7.10 Pull-down main outputs
According to the Intel ATX specification, the main outputs (3.3 V, 5 V and 12 V) must be at ground level in Standby mode. Therefore, these outputs are pulled low when the system is in Standby mode. The pull-down transistors for the 3.3 V and 5 V outputs are integrated in the TEA1781T, whereas the pull-down transistor for the 12 V is integrated in the TEA1782T.
7.11 OPTO control
The TEA1782T defines the mode of operation of the system. It communicates with the TEA1781T via the ENABLE pin and with the TEA1771T primary controller via the opto coupler connected to the OPTO control block. Depending on the mode of operation, the current to the opto coupler has the following values:
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
14 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
OPTO control modes IOPTO 0 mA to 3.5 mA 3.5 mA 30 mA
Table 4.
Mode of operation Standby mode Normal mode System restart
In Standby mode, a higher IOPTO current implies a higher duty cycle / frequency of the system. In Normal mode, the systems duty cycle/frequency is defined by the primary controller being related to the inverse of the input voltage. The OPTO control block diagram is given in Figure 13.
off OPTO control PVCC
UP DOWN
S1
S3
S4
I
S2
OPTO
V/I
Normal mode
014aaa193
Fig 13. TEA1782T OPTO control diagram
At system start-up, the secondary controllers are supplied via a rectified secondary winding voltage. Therefore the secondary controllers are started up after the primary side has started up. As the voltage at the OPTO pin is zero when the secondary controllers are not yet supplied, the primary side starts up at the minimum duty cycle/frequency. Once the secondary side has started, it increases the operating duty cycle/frequency of the system depending on the standby load and mode of operation. When the system is in Normal mode, switch S3 is closed and the opto coupler current is increased to IOPTO (Normal mode). In this mode, the primary duty cycle is defined by the primary controller TEA1771T and is related to the inverse of the input voltage. When the secondary protection mode fails, switch S4 is closed and a maximum current flows through the opto coupler. This high current triggers the primary controller into Protection mode, switching off the primary main switch. A safe restart of the system will follow. This implies that the system will start up again after all the supply voltages, primary and secondary, are below their UVLO levels resulting in a total reset of the system. In Standby mode, the system minimizes the duty cycle of the primary control switch to reduce the magnetic losses in the transformer to a minimum. As the primary duty cycle has to be at least equal to the secondary duty cycle, the system will equalize both duty cycles in Standby mode. This is regulated in the opto control block.
TEA1781_82_1 (c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
15 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
The opto control compares the primary and secondary standby duty cycle and defines if the primary duty cycle has to be changed, see Figure 14.
S1 primairy main switch
closed open VINDC / N
VWND_SEC_1
0 -Vrst / N closed
SB open decreasing prim "1" down "0" increasing prim "1" up "0"
IOPTO
014aaa194
Fig 14. TEA1782T OPTO control duty cycles
The primary duty cycle is derived from the secondary transformer voltage. If VWND_SEC_1 is above a certain positive level before the switch SB is turned on, a down pulse is generated. An up pulse is generated when VWND_SEC_1 is high after SB is turned on. The current into the opto coupler is regulated until it reaches a stable value via the down pulse and up pulse. Through the opto coupler, the primary duty cycle and frequency eventually stabilize to provide the duty cycle required by the secondary standby converter.
7.12 Protections
7.12.1 General
All outputs have an OVP and an OCP function. The OVP and OCP functions have a delay of td(prot), which is typically 18 s. If the output voltage or the output current on one of the main outputs (3.3 V, 5 V, 12 V1, or 12 V2) exceeds their upper limit, the system will enter Protection mode. In this mode all main outputs are switched off by switching off all corresponding secondary switches. The system will enter the Normal mode again after toggling the PS_ON# signal or after a mains interruption. A 12 V OVP / OCP is detected in the TEA1782T. When detecting a 12 V OVP or OCP, the pin ENABLE is pulled down and as a result both the TEA1782T and the TEA1781T will disable the main outputs. The 5 V standby output remains on. A 3.3 V or 5 V OVP or OCP is detected in the TEA1781T and communicated to the TEA1782 via the pin ENABLE. As a result the TEA1782T will pull down the pin ENABLE, disabling all main outputs.
TEA1781_82_1 (c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
16 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
When the 5 V standby voltage / current exceeds its upper limit the output will be switched off. It will be turned on again at the next cycle as soon as the output voltage/current level drops below the upper limit.
7.12.2 Undervoltage protection
When undervoltage is detected on one of the main outputs (3.3 V, 5 V, 12 V) the pin PGOOD is pulled low which again pulls the PWROK signal low. When undervoltage on the 5 V standby output is detected, the system switches to Standby mode and returns back to Normal mode once the 5 V standby is above its minimum level.
7.12.3 Overvoltage protection
As stated previously, all outputs have an OVP function. However, the 12 V1 and 12 V2 have one OVP function. It is assumed that the 12 V2 is directly coupled to the 12 V1 voltage and therefore these voltages are about equal. All OVP levels are integrated and cannot be set externally.
7.12.4 Overcurrent protection
The OCP levels can be set externally. The maximum output current of the 12 V1 and 12 V2 are supposed to be about equal, therefore have the same OCP setting. Figure 15 gives the 12 V OCP block diagram.
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
17 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
Protection mode
Protection 12 V IVOUT_12V - 2 x IVOUT_12V2 > Iocp_12V or 2 x IVOUT_12V2 > Iocp_12V Vovp(VOUT_12V1)
TEA1782
IVOUT_12V2 IVOUT_12V Iocp_12V Vref(OCP)
CS_12V
VOUT_12V1
VOUT_12V2
OCP_12V
VVOUT_12V1 VVOUT_12V2
014aaa195
Fig 15. 12 V output overcurrent protection
The total output current (equal to Iout_12V1 + Iout_12V2) is measured via an RC network across the output inductor, using the series resistance of the output inductor. The 12V2 output current is measured using a series resistance. Subtracting these two then gives the 12V1 output current. Both output currents are then compared to the Iocp (12 V output) setting. If one of these currents exceeds the Iocp (12 V output) setting, the system will enter the Protection mode.The system supposes the extra series resistance to be half the value of the inductor series resistance. The Iocp (12 V output) has a default setting of -100 A, corresponding to 180 mV for 12V1, and 90 mV for 12V2. Applying a series resistance of 5 m and an inductor series resistance of 10 m, the default OCP levels of the 12 V outputs are set at 18 A. The OCP levels of the 12 V outputs can be increased by a resistor from pin OCP_12V to ground and decreased by a resistor from pin VDD to pin OCP_12V. The 3.3 V and 5 V OCP can be adjusted externally, whereas the system assumes identical 3.3 V and 5 V OCP levels, see Figure 16. The output currents are measured via an RC network across the output inductor, making use of the inductor series resistance. If either the 5 V or 3.3 V output exceeds its OCP setting, the system enters the Protection mode.
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
18 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
Protection mode Protection 5 V Protection 3.3 V
Protection mode
Vovp(VOUT_5V) IVOUT_5V
IVOUT_5V > Iocp Iocp Vref(OCP)
IVOUT_3V3 > Iocp Vovp(VOUT_3V3) IVOUT_3V3
VVOUT_5V
CS_3V3 VOUT_3V3
CS_5V VOUT_5V
OCP
VVOUT_3V3
014aaa196
Fig 16. 3.3 V / 5 V output overcurrent protection
The Iocp has a default setting of -100 A. Applying an inductor series resistance of 10 m, the default OCP level is set at 19.5 A. The OCP levels of 3.3 V and 5 V can be increased by a resistor from pin OCP to ground and decreased by a resistor from pin VDD to pin OCP. The 5 V standby OCP level is set to approximately 2.5 A, assuming an inductors series resistance of 70 m. The OCP_STB level can be increased by a resistor from pin OCP_STB to ground and decreased by a resistor from pin VDD to pin OCP_STB. Besides changing the OCP level by a resistor connected to the OCP pin, this level can be changed by choosing a different series resistance of the output coil. Whereas an OCP on one of the main outputs results in a latched Protection mode, a 5 V standby OCP also disables the output but resumes switching at the next cycle when the output current drops below the OCP level. When the 5 V standby output voltage drops below its minimum level, because the output current is limited, the system switches to Standby mode.
7.12.5 Overtemperature protection
The system will enter the Protection mode at an initialized temperature level via an external NTC network connected to the VNTC pin of the TEA1781T. In this way the system can be protected against overtemperature.
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
19 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
If an OTP is detected all main outputs will be switched off, but the 5 V standby output remains on.
7.12.6 System restart
If an OCP, OVP, or OTP is detected on one of the main outputs, all these outputs are switched off and latched. A OCP or OVP detection on the 5 V standby will switch off its output but it will be resumed again at the next cycle. All outputs can be disabled individually by disabling the bidirectional switch (SR / SB). Disabling an output will resolve the reason why Protection mode was entered, which can be an OVP, OCP or OTP. If a certain time after entering Protection mode (td(restart) ( 500 s)) the system still detects an OCP or OVP, the secondary side enters the system restart mode. In this mode the primary side is switched off via the opto coupler, followed by a safe restart. A continuous error could be caused by a shorted SB switch, for example. If a small increase of temperature is detected because of an OTP after entering Protection mode, the system will also turn off the primary side. So normally, an OCP, OVP or OTP will switch off the secondary outputs. Only when an OCP, OVP or OTP remains after the outputs are switched off, will the primary side be switched off. In that case the 5 V standby output will also drop.
8. Limiting values
Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol TEA1781T VDF_5V VVSTARTUP Iocp VCS_5V VVOUT_5V VVSENSE_5V VVNTC VENABLE VPGND_5V VDD VPGND_3V3 VPWROK
TEA1781_82_1
Parameter voltage on pin DF_5V voltage on pin VSTARTUP overcurrent protection current voltage on pin CS_5V voltage on pin VOUT_5V voltage on pin VSENSE_5V voltage on pin VNTC voltage on pin ENABLE voltage on pin PGND_5V supply voltage voltage on pin PGND_3V3 voltage on pin PWROK
Conditions
Min -7 -0.4 -250 -0.4 -0.4 -0.4 -0.4 -0.4 -0.8 -0.4 -0.8 -0.4
Max +40 +75 +80 +7 +7 +7 +7 +13 +0.8 +13 +0.8 +13
Unit V V A V V V V V V V V V
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
20 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
Table 5. Limiting values ...continued In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol VVSENSE_3V3 VVOUT_3V3 VCS_3V3 VPGOOD VDF_3V3 VWND_SEC_2 General Ptot Tstg Tj Vesd total power dissipation storage temperature junction temperature electrostatic discharge human body voltage all pins all pins charged device model TEA1782T VDF_12V IOCP_12V VCS_12V VVOUT_12V1 VVOUT_12V2 VEN_NM VPS_OFF VPGND_12V VDD VPGND_STB VPGOOD VVOUT_STB VCS_STB IOCP_STB voltage on pin DF_12V current on pin OCP_12V voltage on pin CS_12V with respect to VVOUT_12V1 voltage on pin VOUT_12V1 voltage on pin VOUT_12V2 voltage on pin EN_NM voltage on pin PS_OFF voltage on pin PGND_12V supply voltage voltage on pin PGND_STB voltage on pin PGOOD voltage on pin VOUT_STB voltage on pin CS_STB current on pin OCP_STB with respect to VVOUT_12V2 -7 -250 -0.4 -0.4 -0.4 -0.4 -0.4 -0.8 -0.4 -0.8 -0.4 -0.4 -0.4 -250 +73 +80 +0.8 +0.4 +13.4 +13 +13 +0.8 +13 +0.8 +13 +7 +7 +80 V A V V V V V V V V V V V A model:[1] -2000 -200 +2000 +200 500 V V V Tamb < 45 C -55 -20 +150 +145 W C C Parameter voltage on pin VSENSE_3V3 voltage on pin VOUT_3V3 voltage on pin CS_3V3 voltage on pin PGOOD voltage on pin DF_3V3 voltage on pin WND_SEC_2 Conditions Min -0.4 -0.4 -0.4 -0.4 -7 -40 Max +7 +7 +7 +7 +40 +40 Unit V V V V V V
machine model:[2]
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
21 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
Table 5. Limiting values ...continued In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol VDF_STB VWND_SEC_1 General Ptot Tstg Tj Vesd total power dissipation storage temperature junction temperature electrostatic discharge human body model:[1] voltage all pins machine model:[2] -150 +150 +500 V V all pins charged device model
[1] [2] [3]
Parameter voltage on pin DF_STB voltage on pin WND_SEC_1
Conditions
Min -0.8 -73
Max +73 +73
Unit V V
Tamb < 45 C
-55 -20 -1500
+150 +145 +1500
W C C V
Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k series resistor. Machine model: equivalent to discharging a 200 pF capacitor through a 0.75 H coil and a 10 series resistor. Peak voltages up to the OVP level are allowed.
9. Thermal characteristics
Table 6. Symbol Rth(j-a)
[1]
Thermal characteristics Parameter thermal resistance from junction to ambient Conditions in free air
[1]
Typ
Unit K/W
Thermal resistance Rth(j-a) can be lower when pin GND is connected to sufficient copper area on the printed-circuit board. See the TEA1771T application notes for details.
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
22 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
10. Characteristics
Table 7. TEA1781T characteristics Tamb = 25 C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC; unless otherwise specified. Symbol Supply Vreg(VDD) IVDD Drivers Rpu pull-up resistance SR / SB drivers; VWND(SEC)_2 = VDF_3V3 = VDF_5V = 40 V; VFSR = VFSB_3V3 = VFSB_5V = 52 V; VGSB_3V3 = VGSB_5V = VGSR = 51.5 V SF drivers; VDF_3V3 = VDF_5V = -1 V; VVDD - VGSF_3V3 (or VGSF_5V) = 0.5 V Rpd pull-down resistance SR / SB drivers; VWND(SEC)_2 = VDF_3V3 = VDF_5V = 40 V; VFSR = VFSB_3V3 = VFSB_5V = 52 V; VGSB_3V3 = VGSB_5V = VGSR = 40.5 V SF driver; VDF_3V3 = VDF_5V = 0 V; VGSF_3V3 = VGSF_5V = 0.5 V Vfloat(UVLO) Control Vtrip(L) LOW-level trip voltage enable GSB; voltage on pin WND_SEC_2 enable GSR; voltage on pin DF (3.3 V and 5 V) Vtrip(H) HIGH-level trip voltage enable GSB; voltage on pin WND_SEC_2 enable GSR; voltage on pin DF (3.3 V and 5 V) td I-Control 3.3 V Vref(3V3) I-Control 5 V Vref(5V) reference voltage (5 V) VCS_5V = VVOUT VCS_5V = VVOUT + 100 mV Pins VOUT_3V3 and VOUT_5V Ipd Enable Vtrip(ENABLE)
TEA1781_82_1
Parameter regulation voltage on pin VDD current on pin VDD
Conditions Vstartup = 14 V to 90 V Standby mode Normal mode
Min 9.0 13
Typ 9.5 1.2 1.9 17
Max 10.1 21
Unit V mA mA
3.5
30 4.5
5.5

3.5 5.0
4.5 5.4
5.5 5.8
V
undervoltage lockout floating voltage
SR/SB driver
-4.7 3.4 -2.2 5.8 3.25 3.19 4.95 4.85 2
-4.1 4.5 -1.9 7.0 0.9 3.35 3.29 5.10 5.00 4
-3.5 5.6 -1.6 8.2 3.45 3.39 5.25 5.15 6
V V V V s V V V V mA
delay time reference voltage (3.3 V)
enable GSB VCS_3V3 = VVOUT VCS_3V3 = VVOUT + 100 mV
pull-down current
Standby mode; VVOUT_3V3 = VVOUT_5V = 0.4 V
trip voltage on pin ENABLE
Rev. 01 -- 13 February 2009
7.0
8.0
9.0
V
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
23 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
Table 7. TEA1781T characteristics ...continued Tamb = 25 C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC; unless otherwise specified. Symbol IENABLE Soft start tstart(soft) Isink(PGOOD) Vtrip(H)(PGOOD) Vtrip(L)(PGOOD) Isink(PWROK) soft start time sink current on pin PGOOD HIGH-level trip voltage on pin PGOOD LOW-level trip voltage on LOW pin PGOOD sink current on pin PWROK reference voltage on pin OCP overcurrent protection voltage VPWROK = 0.4 V VPGOOD = 0.4 V 10 6.0 2.5 2.2 16 15 2.7 2.4 20 3.0 2.7 ms mA V V mA PGOOD and PWROK Parameter current on pin ENABLE Conditions current pulled out of the pin ENABLE to disable, to move to Protection mode Min 1.0 Typ Max Unit mA
Overcurrent protection Vref(OCP) Vocp OCP = n.c. VCS_x - VVOUT activating current protection; OCP = n.c. VCS_x - VVOUT activating current protection; Iocp = -100 A VCS_x - VVOUT activating current protection; Iocp = 50 A VCS_x - VVOUT activating current protection during soft start; OCP = n.c. Undervoltage/overvoltage protection Vuvp(VOUT_3V3) undervoltage protection voltage on pin VOUT_3V3 undervoltage protection voltage on pin VOUT_5V overvoltage protection voltage on pin VOUT_3V3 overvoltage protection voltage on pin VOUT_5V HIGH-level overtemperature protection voltage LOW-level overtemperature protection voltage VENABLE = 12 V 2.60 2.80 3.00 V
[1]
1.21 155 320 60 310
1.25 180 380 80 360
1.29 205 440 105 410
V mV mV mV mV
[1]
[1]
[1]
Vuvp(VOUT_5V) Vovp(VOUT_3V3)
4.00 3.76
4.25 4.00
4.50 4.25
V V
Vovp(VOUT_5V)
6.00
6.40
6.80
V
Temperature protection Votp(H) 450 505 560 mV
Votp(L)
VENABLE = 0 V
320
375
430
mV
[1]
VCS_x: the "x" stand for either "3V3" or "5V".
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
24 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
Table 8. TEA1782T characteristics Tamb = 25 C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC; unless otherwise specified. Symbol Supply Vstartup(VDD) Vstop(VDD) IVDD td(startup) Rpu Rpd start-up voltage on pin VDD stop voltage on pin VDD current on pin VDD start-up delay time pull-up resistance pull-down resistance pull-up resistance SF driver; VDF_12V = VDF_STB = -1 V; VVDD - VGSF_12V (or VGSF_STB) = 0.5 V SF driver; VDF_12V = VDF_STB = 0 V; VGSF_12V = VGSF_STB = 0.5 V SR / SB drivers; VWND(SEC)_1 = VDF_12V = VDF_STB = 73 V; VFSR = VFSB_12V = VFSB_STB = 85 V; VGSR = VGSB_12V = VGSB_STB = 84.5 V SF driver; VDF_12V = VDF_STB = -1 V; VVDD - VGSF_12V (or VGSF_STB) = 0.5 V Rpd pull-down resistance SR / SB drivers; VWND(SEC)_1 = VDF_12V = VDF_STB = 73 V; VFSR = VFSB_12V = VFSB_STB = 85 V; VGSR = VGSF_12V = VGSF_STB = 73.5 V VDF_12V = VDF_STB = 0 V; VGSF_12V = VGSF_STB = 0.5 V Vfloat(UVLO) undervoltage lockout floating voltage LOW-level trip voltage HIGH-level trip voltage LOW-level trip voltage HIGH-level trip voltage delay time standby reference voltage enable GSB standby; voltage on pin WND_SEC_1 enable GSB standby; voltage on pin WND_SEC_1 enable GSB 12 V; voltage on pin WND_SEC_1 enable GSR; voltage on pin DF Vtrip(H) enable GSB 12 V; voltage on pin WND_SEC_1 enable GSR; voltage on pin DF td Vref(stb) enable GSB 12 V I-control standby 4.85 VCS_x = VVOUT + 100 mV
[1]
Parameter
Conditions
Min 8.0 6.9 5 5.0
Typ 8.5 7.4 3.0 7 35 6.5
Max 9.0 7.9 9 8.0
Unit V V mA ms
Driver SF standby
Drivers (12 V and SB standby) Rpu 13 17 21
3.5
30 4.5
5.5

3.5 5.0
4.5 5.4
5.5 5.8
V
Control standby Vtrip(L) Vtrip(H) Control 12 V Vtrip(L) -12.5 -11 3.8 -5.5 6.4 0.7 4.6 -5.0 7.2 0.9 5.00 4.9 -9.5 5.4 -4.5 8.0 1.1 5.15 5.1 V V V V s V V 1.0 8.0 2.0 9.0 3.0 10.0 V V
4.7
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
25 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
Table 8. TEA1782T characteristics ...continued Tamb = 25 C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC; unless otherwise specified. Symbol I-Control 12 V Vref(12V) reference voltage (12 V) 11.7 VCS_x = VVOUT + 100 mV Standby mode; VOUT_12V = VOUT_STB = 0.4 V
[1]
Parameter
Conditions
Min
Typ 12.1 11.9 6
Max 12.4 12.3 8
Unit V V mA
11.5 4
Pins VOUT_12V and VOUT_STB Ipd pull-down current
Enable Normal mode VEN_NM voltage on pin EN_NM 1.14 system to Standby mode Normal mode Standby mode Enable VENABLE Iprot(ENABLE) Soft start tstart(soft) Isink(PGOOD) OPTO control IOPTO current on pin OPTO VOPTO = 5 V Standby mode 0 IOPTO (Normal mode) -2.5 -20 1.28 mA soft start time sink current on pin PGOOD VPGOOD = 0.4 V 10 6.0 15 20 ms mA PowerGood and PowerOK voltage on pin ENABLE protection current on pin ENABLE Normal mode Standby mode Normal mode; Protection mode 10.5 3.8 -600 11.0 4.2 -450 11.5 4.6 -300 V V A 0.66 1.0 1.4 1.20 0.70 1.2 1.7 1.26 0.74 1.4 2.0 V V V V
Digital control pin PS_OFF Vtrip trip voltage
Normal mode system restart Overcurrent protection (OCP levels for 12 V2 are half the values given below) Vref(OCP_12V) Vref(OCP_STB) reference voltage on pin OCP_12V reference voltage on pin OCP_STB
-4.5 -40 1.18
-3.5 -30 1.23
mA mA V
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
26 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
Table 8. TEA1782T characteristics ...continued Tamb = 25 C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC; unless otherwise specified. Symbol Vocp Parameter overcurrent protection voltage Conditions VCS_x - VVOUT activating current protection; OCP = n.c. (Can VCS be changed to e.g. VCS_12V or VCS_STB here. If so, then that is preferred here.) VCS_x - VVOUT activating current protection; IOCP = -100 mA (Can VCS be changed to e.g. VCS_12V or VCS_STB here. If so, then that is preferred here.) VCS_x - VOUT activating current protection; IOCP = +50 mA (Can VCS be changed to e.g. VCS_12V or VCS_STB here. If so, then that is preferred here.) VCS_STB - VVOUT_STB activating current protection during soft start; OCP_STB = n.c. VCS_12V - VVOUT_12V activating current protection during soft start; OCP_12V = n.c. Undervoltage protection/overvoltage protection Vuvp(VOUT_STB) undervoltage protection voltage on pin VOUT_STB 3.90 4.25 4.60 V
[1]
Min 155
Typ 180
Max 205
Unit mV
[1]
320
380
440
mV
[1]
60
80
105
mV
230
270
310
mV
310
360
410
mV
Vuvp(VOUT_12V1) undervoltage protection voltage on pin VOUT_12V1 Vovp(VOUT_STB) overvoltage protection voltage on pin VOUT_STB
9.70
10.20 10.70
V
5.70
6.10
6.50
V
Vovp(VOUT_12V1) overvoltage protection voltage on pin VOUT_12V1 Protection td(prot) System restart td(restart)
[1]
13.7
14.5
15.2
V
protection delay time restart delay time
9
18
27
s
275
550
825
s
VCS_x: The "x" stands for either "12V" or "STB"
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
27 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
11. Application information
SR SB_3V3
VOUT_3V3
PWROK 28 27 26 25 24 23 22 21 20 19 18 17 15 14 GSF_3V3 PWROK CS_3V3 CS_3V3 VSENSE_3V3 WND_SEC_2 PGND_3V3 GSR FSB_3V3 DF_3V3 GSB_3V3 PGOOD VDD FSR
TEA1781
VSENSE_5V VSTARTUP VOUT_5V
PGND_5V
ENABLE
GSB_5V
GSF_5V
FSB_5V
ntc GND GND
CS_5V
DF_5V
1
2
3
4
5
6
7
8
9 10 11 12 13 14
VNTC
OCP
VOUT_5V
SB_5V
SF_5V
SB_STB SF_STB
VOUT_STB
28 27 26 25 24 23 22 21 20 19 18 17 16 15 GSF_STB WND_SEC_1 FSB_STB GSB_STB OCP_STB CS_STB PGOOD PGND_STB DF_STB VOUT_STB OPTO GSR VDD FSR
PS_ON#
TEA1782
VOUT_12V1 VOUT_12V2 PGND_12V OCP_12V GSB_12V GSF_12V FSB_12V ENABLE
PS_OFF
CS_12V
DF_12V
EN_NM
GND
SR
1
2
3
4
5
6
7
8
9 10 11 12 13 14
GND
VOUT_12V2 VOUT_12V1
SB_12V
SF_12V
014aaa755
Fig 17. Application diagram
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
28 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
12. Package outline
SO28: plastic small outline package; 28 leads; body width 7.5 mm SOT136-1
D
E
A X
c y HE vMA
Z 28 15
Q A2 A1 pin 1 index Lp L 1 e bp 14 wM detail X (A 3) A
0
5 scale
10 mm
DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT mm inches Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. OUTLINE VERSION SOT136-1 REFERENCES IEC 075E06 JEDEC MS-013 JEITA EUROPEAN PROJECTION A max. 2.65 0.1 A1 0.3 0.1 A2 2.45 2.25 A3 0.25 0.01 bp 0.49 0.36 c 0.32 0.23 D (1) 18.1 17.7 0.71 0.69 E (1) 7.6 7.4 0.30 0.29 e 1.27 0.05 HE 10.65 10.00 L 1.4 Lp 1.1 0.4 Q 1.1 1.0 0.043 0.039 v 0.25 0.01 w 0.25 0.01 y 0.1 Z
(1)
0.9 0.4
0.012 0.096 0.004 0.089
0.019 0.013 0.014 0.009
0.419 0.043 0.055 0.394 0.016
0.035 0.004 0.016
8o o 0
ISSUE DATE 99-12-27 03-02-19
Fig 18. Package outline SOT136-1 (SO28)
TEA1781_82_1 (c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
29 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
13. Revision history
Table 9. Revision history Release date 20090213 Data sheet status Preliminary data sheet Change notice Supersedes Document ID TEA1781_82_1
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
30 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
14. Legal information
14.1 Data sheet status
Document status[1][2] Objective [short] data sheet Preliminary [short] data sheet Product [short] data sheet
[1] [2] [3]
Product status[3] Development Qualification Production
Definition This document contains data from the objective specification for product development. This document contains data from the preliminary specification. This document contains the product specification.
Please consult the most recently issued document before initiating or completing a design. The term `short data sheet' is explained in section "Definitions". The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.
14.2 Definitions
Draft -- The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet -- A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications -- Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values -- Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale -- NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license -- Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Quick reference data -- The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.
14.3 Disclaimers
General -- Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes -- NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use -- NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
14.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. GreenChip -- is a trademark of NXP B.V.
15. Contact information
For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com
TEA1781_82_1
(c) NXP B.V. 2009. All rights reserved.
Preliminary data sheet
Rev. 01 -- 13 February 2009
31 of 32
NXP Semiconductors
TEA1781T; TEA1782T
GreenChip PC secondary control ICs
16. Contents
1 2 3 4 5 6 6.1 6.2 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 7.12.1 7.12.2 7.12.3 7.12.4 7.12.5 7.12.6 8 9 10 11 12 13 14 14.1 14.2 14.3 14.4 15 16 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pinning information . . . . . . . . . . . . . . . . . . . . . . 4 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5 Functional description . . . . . . . . . . . . . . . . . . . 6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Mode of operation. . . . . . . . . . . . . . . . . . . . . . . 8 Enable Normal mode . . . . . . . . . . . . . . . . . . . . 9 Soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output drivers . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output voltage regulation . . . . . . . . . . . . . . . . 13 PowerOK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Pull-down main outputs . . . . . . . . . . . . . . . . . 14 OPTO control . . . . . . . . . . . . . . . . . . . . . . . . . 14 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Undervoltage protection . . . . . . . . . . . . . . . . . 17 Overvoltage protection . . . . . . . . . . . . . . . . . . 17 Overcurrent protection . . . . . . . . . . . . . . . . . . 17 Overtemperature protection . . . . . . . . . . . . . . 19 System restart . . . . . . . . . . . . . . . . . . . . . . . . 20 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 20 Thermal characteristics. . . . . . . . . . . . . . . . . . 22 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 23 Application information. . . . . . . . . . . . . . . . . . 28 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 29 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 30 Legal information. . . . . . . . . . . . . . . . . . . . . . . 31 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 31 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Contact information. . . . . . . . . . . . . . . . . . . . . 31 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Please be aware that important notices concerning this document and the product(s) described herein, have been included in section `Legal information'.
(c) NXP B.V. 2009.
All rights reserved.
For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 13 February 2009 Document identifier: TEA1781_82_1


▲Up To Search▲   

 
Price & Availability of TEA1781T

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X